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RCM-TVD hybrid scheme for hyperbolic conservation laws
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SUMMARY

We describe a hybrid method for the solution of hyperbolic conservation laws. A third-order total variation
diminishing (TVD) finite difference scheme is conjugated with a random choice method (RCM) in a grid-
based adaptive way. An efficient multi-resolution technique is used to detect the high gradient regions of
the numerical solution in order to capture the shock with RCM while the smooth regions are computed with
the more efficient TVD scheme. The hybrid scheme captures correctly the discontinuities of the solution
and saves CPU time. Numerical experiments with one- and two-dimensional problems are presented.
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1. INTRODUCTION

The present work is concerned with the numerical solution of the hyperbolic conservation laws.
It is well known that the exact solutions to such equations may develop discontinuities in finite
time, even when the initial condition is smooth, so that one needs to consider weak solutions.
A successful method should compute such discontinuities with the correct position and without
spurious oscillations and yet achieve a high order of accuracy in the regions of smoothness.

Harten [1] introduced the total variation diminishing (TVD) schemes modified by many others.
A third-order TVD scheme is presented in [2]. The main property of the TVD scheme is that
it can be second order (or higher) and oscillations-free across discontinuities. Moreover, TVD
schemes are very accurate in smooth parts. The disadvantage of the TVD schemes is that they avoid
oscillations near discontinuities by locally reverting to first order of accuracy near discontinuities
and extrema and are therefore unsuitable for applications involving long-time evolution of complex
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746 Y. H. ZAHRAN

structures, such as in acoustic and compressible turbulence. In these applications, extrema are
clipped as time evolves and numerical diffusion may become dominant.

Shock-captured methods are needed for such applications. One of these methods is the random
choice method (RCM) invented by Glimm [3] and made more practical by Chorin [4]. RCM has
the ability to capture discontinuities with infinite resolution (zero width). RCM uses the exact
solution of the local Riemann problems (RPs) to provide numerical solutions to the general initial
boundary value problem. Toro [5] presented an exact Riemann solver which was found to be more
efficient than others. The RCM provides sharp discontinuities, but accuracy is poor in smooth parts
of the flow.

Toro and Roe [6] introduced a hybrid scheme in which they used RCM and Roe’s method and
used the values of the approximate solution to switch to RCM near discontinuities.

The purpose of this paper is to combine the third-order TVD scheme [2] with RCM to produce
zero width discontinuities and accurate representation of the smooth parts of the flow. RCM is
used only at ‘large’ discontinuities and the third-order TVD scheme is used in smooth parts.

The question is how to distinguish between those regions? For this purpose, Harten [7] developed
a multi-resolutions technique which is performed at every step of the temporal integration process.
Here we use a more efficient multi-resolution technique presented in [8, 9]. The resulting scheme
ensures that the solutions at grid points around discontinuities will always be computed by an
RCM, whereas smooth tendencies will not suffer any unnecessary extra damping since they will
be treated by a TVD scheme.

The rest of the paper is organized as follows. In Section 2 we review the RCM. In Section 3
we describe the third-order TVD scheme and in Section 4 a TVD Runge–Kutta method, for time
integration, is presented. The multi-resolution algorithm is discussed in Section 5. In Section 6 we
present the hybrid scheme. Numerical results for one-dimensional conservation laws are presented
in Section 7. In Section 8 the extension to two-dimensional problems is presented. Conclusions
are drawn in Section 9.

2. RANDOM CHOICE METHOD

In this section we review the RCM for one-dimensional conservation laws:

ut +[ f (u)]x =0 (1)

along with initial and boundary conditions. Here u(x, t) is the vector of unknown conservative
variables and f (u) is the physical flux vector. Throughout this paper, we consider only uniform
grids and use the following notation: let x j = j�x , x j±1/2= x j ± 1

2�x , t
n =n�t , unj =u(x j , tn)

and the cell I j =[x j−1/2, x j+1/2], where �x and �t are small spatial and time scales. Consider a
control volume in x-space.

Suppose that the data at t= tn for the initial value problem (1) can be suitably approximated
by a piecewise constant function over a cell of width �x= x j+1/2−x j−1/2, in the form

u(x, t)=unj , x j−1/2�x�x j+1/2 (2)
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Figure 1. Solution of local Riemann problems, RP ( j−1, j) and RP ( j, j+1).

then for a sufficiently small time step �t the original problem becomes a set of Riemann problems
{RP( j, j+1)}, which is the initial value problem (1) subject to the initial condition

u(x, tn)=
{
unj , x<x j+1/2

unj+1, x�x j+1/2
(3)

The exact solutions of the RPs are pieced together to form the solution of the next time level
tn+1. Each local problem has a solution as depicted in Figure 1 and can be solved exactly. For
Euler equations efficient exact solutions are presented in [5]. The lines shown are the characteristic
waves corresponding to the eigenvalues of the Jacobian matrix of f (u).

Here we use the exact solution presented in [5].
Now the solution is valid locally for restricted range of space and time, i.e. before wave

interaction occurs. For sufficient small �t the local solutions are unique in their respective domains,
so that the global solution at tn+1 is uniquely defined. RCM will take the updated solution un+1

j
to be determined by the exact solution of the RP ( j−1, j) and RP ( j, j+1), evaluated at random
position Q j =(x j−1/2+�n�x, tn+1) in the x–t plane.

For sampling, see Figure 1. Here �n is a quasi-random number in the interval [0,1]. For instance,
if �n =0, then Q j lies on the inter-cell boundary x= x j−1/2 and the solution un+1

j is the exact
solution of RP ( j−1, j) at that position. If �n =1, then Q j is on the right inter-cell boundary at
x= x j+1/2. If �n =0.5, then un+1

j =unj , i.e. the old value remains unaltered. In general, the RCM
takes

un+1
j =V n+1

j (Q j ) (4)

where V (x, t) is the exact solution of the RP.
We note that the original RCM [3] advanced the solution into two steps using a staggered grid.

Here we present the one-step RCM on a non-staggered grid [5], which is simpler to implement.
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The time step size �t is chosen to satisfy Courant–Friedrichs–Lewy (CFL) condition

CFL�1

where CFL=max j (Snj �t/�x). Here Snj is the maximum propagation speed in I j at time level n.

3. THIRD-ORDER TVD FINITE DIFFERENCE SCHEME

In this section the third-order explicit TVD schemes presented in [2] are reviewed.
First, let us consider the linear case f (u)=au in (1) so that f ′(u)=a is a constant wave speed.
The semi-discrete finite difference formulation of (1) in a uniformly spaced grid is

d

dt
(u j (t))= −1

�x
[ f j+1/2− f j−1/2]= L j (u) (5a)

where f j+1/2 is the numerical flux.
The third-order conservative TVD numerical fluxes introduced in [2] have the form

f j+1/2 = 1
2 (au j +au j+1)− 1

2 |a|� j+1/2u+|a|{A0� j+1/2u+A1� j+L+1/2u}� j

+|a|A2� j+M+1/2u� j+M (5b)

where L=−1, M=1 for c>0 and L=1, M=−1 for c<0.
Here c=a(�t/�x) is the Courant number, and � j+1/2u=u j+1−u j , where

A0= 1

2
− |c|

4
, A1=−|c|

8
− c2

8
, A2=−|c|

8
+ c2

8
(6)

Here � j and � j+M are flux limiter functions. For more details, see, [2, 10].
For nonlinear scalar problems a=a(u), we define the wave speed

a j+1/2=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� j+1/2 f

� j+1/2u
, � j+1/2u �=0

� f

�u

∣∣∣∣
u j

, � j+1/2u=0

(7)

The numerical flux (5a), (5b) takes the form

f j+1/2 = 1

2
( f j + f j+1)− 1

2
|a j+1/2|� j+1/2u+|a j+1/2|{A0� j+1/2u+A1� j+L+1/2u}� j

+|a j+1/2|A2� j+M+1/2u� j+M (8)

The stability condition for the above schemes is

CFL�1

For systems of conservation laws the extension is carried out in local characteristic variables.
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4. TIME DISCRETIZATION

Up to now we have considered only spatial discretizations, leaving the time variable continuous. In
this section we consider the issue of time discretization. The time discretization will be implemented
by a class of high-order TVD Runge–Kutta methods developed in [11].

These Runge–Kutta methods are used to solve a system of initial value problems of ordinary
differential equations (ODE) expressed as

du

dt
= L(u) (9)

where L(u) is an approximation to the derivative (− f (u)x ) in the differential equation (1).
In [11], schemes up to third-order were found to satisfy the TVD conditions.
The optimal third-order TVD Runge–Kutta method is given by

u(1) =un+�t L(un)

u(2) = 3
4u

n+ 1
4u

(1)+ 1
4�t L(u(1))

un+1= 1
3u

n+ 2
3u

(2)+ 2
3�t L(u(2))

(10)

In [11], it has been shown that, even with a very nice second-order TVD spatial discretization, if
the time discretization is by a non-TVD but linearly stable Runge–Kutta method, the result may
be oscillatory. Thus, it would always be safer to use TVD Runge–Kutta methods for hyperbolic
problems.

5. MULTI-RESOLUTION ANALYSIS

The main step in the hybrid scheme proposed in this paper is how to distinguish between the
smooth region and discontinuities. For this purpose, Harten [7] introduced a general framework
for multi-resolution technique in order to detect the smooth and rough parts of the solution. More
recently, Santos et al. [9] and Alves et al. [8] proposed a more efficient multi-resolution algorithm,
called CUBISTA.

In this paper we use this algorithm to distinguish between the smooth parts and discontinuities.
Consider a set of dyadic grid of the form

V j ={x j
k ∈ R : x j

k =2− j k, k∈ Z} (11)

where j identifies the resolution level and k the spatial location.
Assume that the function values are known on the grid V j for Jmin� j�Jmax, and we want to

extend it to the finer grid V j+1. The even-numbered grid point function values in V j+1 are already
present in V j ,

u j+1
2k =u j

k (12)

The function values in the odd numbered grid points in V j+1 are computed using a suitable
interpolation from the known even-numbered grid points (present in V j ). The normalized difference
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between the interpolated value, I j (u j+1
2k+1), and the real one, u j+1

2k+1, is called the interpolative error

coefficient (or multi-resolution coefficient), d j
k and is expressed as i

d j
k =|u j+1

2k+1− I j (u j+1
2k+1)|/uref (13)

where

uref=max(|u j+1
2i+1|), i=0,1, . . . ,2J

is a reference value of the dependent variable.
To calculate the interpolated values, we use the CUBISTA high-resolution scheme [8] as follows:

(i) Compute the face velocity

ak+1/2=(a j
k +a j

k+1)/2

(ii) Compute the normalized face value ûk+1/2, using the CUBISTA high-resolution scheme
[8]; the normalized face value is given by

ûk+1/2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{(
u j
k −u j

k−1

u j
k+1−u j

k−1

)
,

min

(
7

4

u j
k −u j

k−1

u j
k+1−u j

k−1

,
3

4

u j
k −u j

k−1

u j
k+1−u j

k−1

+ 3

8
,
3

4
+ 1

4

u j
k −u j

k−1

u j
k+1−u j

k−1

)}
if ak+1/2�0

max

{(
u j
k+1−u j

k+2

u j
k −u j

k+2

)
,

min

(
7

4

u j
k+1−u j

k+2

u j
k −u j

k+2

,
3

4

u j
k+1−u j

k+2

u j
k −u j

k+2

+ 3

8
,
3

4
+ 1

4

u j
k+1−u j

k+2

u j
k −u j

k+2

)}
if ak+1/2<0

(14)

(iii) Calculate the interpolated value:

I j (u j+1
2k+1)=

⎧⎨
⎩
u j
k−1+ û j

k+1/2(u
j
k+1−u j

k−1) if ak+1/2�0

u j
k+2+ û j

k+1/2(u
j
k −u j

k+2) if ak+1/2<0
(15)

The multi-resolution coefficients {d j
k } are used to generate a shock detection mechanism where a

third-order TVD scheme is switched to an RCMwhenever d j
k is larger than a tolerance parameter �.

The maximum and minimum level of resolution should be specified by the user to avoid
coalescence in a problematic region. (Here we use Jmax=12 and Jmin=4.)

We must add all the grid points necessary for the calculation of the interpolative error coefficients
at the next resolution level. This step is dependent on the interpolative scheme used to evaluate
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I j (u j+1
2k+1). Here we use the high resolution for which the calculation of d j

k implies the presence

of grid points at locations x j
k−1, x

j
k , x

j
k+1 and x j

k+2 (for more details, see, [8, 9]).

6. HYBRID METHOD

In this section, we describe the hybrid RCM-TVD scheme. It is defined as a grid-based adaptive
method in which the choice of the numerical scheme is determined by the smoothness of the
solution at each grid point which is measured by the multi-resolution procedure mentioned in
Section 5.

The third-order TVD scheme is used at those grid points where the solution is flagged as smooth
in lieu of the RCM.

The hybrid scheme is summarized in the following steps:

(1) Assume that the function values u j
k , in the grid V

j at time t= t1, compute the multi-resolution

coefficients d j
k for Jmin� j�Jmax−1 from Equation (13).

(2) The multi-resolution analysis is applied only once at the beginning of the Runge–Kutta
time-stepping scheme. A grid point is flagged as non-smooth when |d j

k |>� where � is a
tolerance parameter defined by the user:

flagi =
{
1 if |di |>�

0 otherwise

(3) Once the flags are set, a number of neighbouring points around each flagged points xi ,
depending on the number of the ghost points needed for a given difference scheme and
RCM scheme, are also flagged to 1.

(4) For the grid points flagged zero (smooth), we compute un+1
j by solving the ODE (5a) using

the numerical flux f j+1/2 (5b) and the Runge–Kutta scheme.
(5) For the grid points designated as non-smooth we compute un+1

j by the RCM (4).

7. NUMERICAL RESULTS

In this section, six examples are presented to illustrate the efficiency and robustness of the proposed
scheme. For all tests we use a uniform mesh; N denotes the number of cells and the exact solution
is shown by the solid line and the numerical solution by symbols.

7.1. Scalar equations

We study the performance of our schemes by applying them to the following problems.

Example 1
We solve the equation

ut +ux =0, x ∈[−1,1] (16)
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subjected to periodic initial data [12]

u(x,0)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6 [G(x, z−�)+G(x, z+�)+4G(x, z)], −0.8�x�−0.6

1, −0.4�x�−0.2

1−|10(x−0.1)|, 0�x�0.2

1
6 [F(x,a−�)+F(x,a+�)+4F(x,a)], 0.4�x�0.6

0 otherwise

(17)

with periodic boundary condition on [−1,1], where G(x, z)=exp(−�(x−z)2), F(x,a)=
{max(1−�2(x−a)2,0}1/2.

The constants are taken as a=0.5, z=−0.7, �=0.005, �=10 and �=(log2)/36�2.
This initial condition consists of several shapes that are difficult for numerical methods to resolve

correctly. Some of these shapes are not smooth and others are smooth but very sharp.
Here we take CFL number equal to 0.45 and N =28+1 grid points with multi-resolution

tolerance �=10−3. Figures 2–4 show the numerical solutions at t=20 units obtained by the third-
order TVD scheme [2], fourth-order TVD scheme [10] and the hybrid method, respectively. We
observe, from the figures, that the TVD schemes produce satisfied results while the numerical
solution obtained by the hybrid scheme is almost indistinguishable from the exact solution.

Example 2 (Burgers’ equation)
This example considers the numerical solution of the inviscid Burgers’ equation

ut +
(
u2

2

)
x
=0 (18)

with initial condition

u(x,0)=
{−1, |x |�0.5

2, |x |<0.5
(19)

The breakdown of the initial discontinuity results in a shock wave with speed 0.5 and a rarefaction
with a sonic point at x=0.5. The exact solution consists of rarefaction wave (left) and shock wave
(right). At t= 2

3 the rarefaction hits the shock and then the solution has a rarefaction wave only.
The numerical solution is displayed at t=0.4 (before collision of the head of the rarefaction with
the shock) and t=1.1 (after collision). Results are shown in Figure 5, with 26+1 grid points,
multi-resolution tolerance �=10−3 and CFL=0.45. Note that the hybrid method reproduces the
exact solution.

Example 3 (Two-shock Burgers’ equation)
Now we show how the hybrid method fares when the solution develops two shocks which eventually
merge. We solve Burgers’ equation (18) with the following initial condition [13]:

u(x,0)=2−sin x+sin2x, x ∈[0,2�] (20)
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Figure 2. Solution of Example 1 using the third-order TVD scheme at t=20.
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Figure 3. Solution of Example 1 using the fourth-order TVD scheme at t=20.
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Figure 4. Solution of Example 1 using the hybrid scheme at t=20.
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Figure 5. Solution of Example 2 using the hybrid scheme at t=0.4 (left) and t=1.1 (right).
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Figure 6. Solution of Example 3 using the third-order TVD scheme at t=1.2.

Figures 6 and 7 show the solution at t=1.2 obtained by third-order TVD scheme and the hybrid
scheme, respectively. From the figures we note that the hybrid scheme is more efficient than the
pure TVD scheme. The comparison with Figure 2 in [13] shows that the hybrid method presents
the shocks correctly while the fifth-order scheme [13] presents the shocks with three points for
each shock.

7.2. Systems of equations

In this section we test our hybrid scheme on the system of Euler equations of gas dynamics

Ut +F(U )x =0 (21)

where U =(�,�u,E)T and F(U )=(�u,�u2+P,u(E+P))T, where � is the density, u is the
velocity, P is the pressure, E=0.5�u2+�e is the total energy (sum of internal energy and kinetic
energy); e is the specific internal energy e= P/�(	−1) and 	 is the ratio of specific heats.
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Figure 7. Solution of Example 3 using the hybrid scheme at t=1.2.

When performing the calculation of multi-resolution coefficient, the density field will be the
one used for the analysis, since it contains not only the discontinuities due to the shocks and the
rarefaction waves but also the contact discontinuities, which are present in the weak solutions of
systems of conservation laws such as the Euler equations.

Example 4 (Shock reflection problem)
We consider the test problem concerning shock reflection in one dimension 0�x�1, governed by
Euler equations of monatomic gas 	= 5

3 with initial data [14]:
�=�0, u=u0, e=e0

This represents a gas of constant density and pressure moving towards x=0. The boundary x=0
is a rigid wall and exact solution describes shock reflection from the wall. The gas is brought to
rest at x=0 and

�0=1, u0=1, P0=3 (22)

e(x, t) is chosen such that the pressure jump across the shock equals 2, i.e. e0=4.5.

Figure 8 illustrates the results at t=0.15 and mesh size of 27+1 grid points with multi-resolution
tolerance �=10−3 and CFL=0.45. We observe that the hybrid scheme resolves the discontinuity
exactly.

Example 5 (Blast wave problem)
The blast problem introduced by Woodward and Colella [15] is a severe test problem and therefore
a good problem to test the robustness of numerical schemes. This problem has the initial condition
which consists of three states

U (x,0)=

⎧⎪⎨
⎪⎩

(�L ,uL , PL)=(1,0,1000), x<0.1

(�M ,uM , PM )=(1,0,0.01), 0.1<x<0.9

(�R,uR, PR)=(1,0,100), x>0.9

(23)
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Figure 8. Solution of Example 4 using third-order scheme (left) and hybrid scheme (right) at t=0.15.
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Figure 9. Solution of Example 5 using the hybrid scheme at t=0.028.
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Figure 10. Solution of Example 5 using the hybrid scheme at t=0.038.

with 	=1.4. Boundary conditions are reflective. The solution of this problem contains the propa-
gation of strong shock waves into low pressure regions, the collision of strong shock waves and
interaction of shock waves and rarefactions, and is thus a good test of the schemes.

Figures 9 and 10 show the density and velocity obtained by the hybrid scheme at t=0.028 and
0.038, respectively, with 28+1 grid points with multi-resolution tolerance �=10−3 and CFL=0.45.
It is noted that the hybrid scheme is able to obtain such sharp resolution of the complex double-
blast problem, particularly, the density peaks have almost the correct value. Comparing the given
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Figure 11. Solution of Example 6 using the hybrid scheme at t=1.8.

results with the results obtained with the reference solution shown in [15], fifth-order scheme in
[13] with 400 cells and pure TVD schemes in [5] we note that our scheme is more accurate and
more economical than the fifth-order scheme and TVD schemes.

Example 6 (Shock/turbulence interaction problem)
To show the advantages of our scheme, we will solve a problem with a rich smooth structure
and a shock wave. A typical example for this is the problem of shock interaction with entropy
waves [16].

We solve the Euler equations (21) with a moving Mach = 3 shock interacting with sine waves
in density; i.e. initially [16]

(�L ,uL , PL)=(3.857143,2.629369,10.3333) for x<−4

(�R,uR, PR)=(1+0.2sin5x, 0, 1) for x>−4
(24)

The flow contains physical oscillations that have to be resolved by the numerical method. We
compute the solution at t=1.8. Figure 11 shows the density computed by hybrid scheme against
the reference solution, which is a converged solution computed by the fifth-order finite difference
WENO scheme [16] with 2000 grid points. Here we use 28+1 grid points with multi-resolution
tolerance �=10−3 and CFL=0.45. Comparing the results in the figure with the results shown
in [13] (see Figure 4 in [13]) we observe that our scheme is more accurate than the fifth-order
scheme [13] and is less expensive, because we use here 28+1 cells versus 400 cells in [13].
Remark
To show the efficiency of the hybrid scheme, we compute the CPU time for both third-order TVD
and hybrid schemes as the hybrid scheme is around 30% faster than the third-order TVD scheme.
This is due to the use of less-expensive RCM flux instead of TVD flux near discontinuities.
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8. EXTENSION TO MULTIDIMENSIONAL PROBLEMS

The present schemes can be applied to multidimensional problems by means of space operator
splitting. As an example we consider the two-dimensional Euler equations

Ut +[F(U )]x +[G(U )]y =0 (25)

Figure 12. Double Mach refection problem for the hybrid method. Meshes of 240×60
(top), 480×120 (middle) and 960×240 (bottom).
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where U =(�,�u,�v,E)T, F(U )=(�u, P+�u2,�uv,u(P+E))T, G(U )=(�v,�uv, P+�v2,

v(P+E))T.
There are several versions of space splitting. Here we take the simplest one, whereby the

two-dimensional problem (25) is replaced by the sequence of two one-dimensional problems

Ut +[F(U )]x =0 (26a)

Ut +[G(U )]y =0 (26b)

If the data Un at time level n for problem (25) are given, the solution Un+1 at time level n+1 is
obtained in the following two steps:

(a) solve Equation (26a) with data Un to obtain an intermediate solution U
n+1

(x-sweep);

(b) solve Equation (26b) with data U
n+1

to obtain the complete solution Un+1 (y-sweep).

For three-dimensional problems there is an extra z-sweep.

8.1. Double Mach reflection problem

The governing equation for this problem is the two-dimensional Euler equations (25). The compu-
tational domain is [0,4]×[0,1]. The reflecting wall lies at the bottom of the computational domain
starting from x= 1

6 . Initially, a right moving Mach 10 shock is positioned at (x, y)=( 16 ,0) and
makes 60◦ angle with the x-axis. For the bottom boundary, the exact postshock condition is
imposed from x=0 to x= 1

6 and a reflective boundary condition is used for the rest of the x-axis.
At the top boundary of the computational domain, the data are set to describe the exact motion of
the Mach 10 shock; refer [5] for a detailed discussion of this problem.

Figure 12 shows the computed density by hybrid scheme on the 240×60, 480×120 and
960×240 cells. We observe that the scheme produces the flow pattern generally accepted in the
present literature [15] as correct. All discontinuities are well resolved and correctly positioned.

Comparing our results with those reported in [17], we observe that the accuracy of our new
scheme is comparable with that of the WENO scheme [17] and superior.

9. CONCLUSIONS

We have presented an efficient, accurate and high-resolution hybrid scheme. In this scheme we use
the third-order TVD scheme in the smooth region and RCM near discontinuities. The numerical
solution is advanced in time by the third-order Runge–Kutta method. The main advantages of
the scheme are reduction of CPU time and improvement in overall accuracy over the classical
TVD schemes. This is due to the use of very cheap shock-captured RCM near discontinuities and
high-order TVD scheme in the smooth region. We use an efficient multi-resolution technique to
detect the discontinuities. This scheme is tested and validated by solving one- and two-dimensional
problems.
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